Дирака уравнение - определение. Что такое Дирака уравнение
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Дирака уравнение - определение

Дирака уравнение
Найдено результатов: 271
Уравнение Дирака         
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
ДИРАКА УРАВНЕНИЕ         
квантовое уравнение движения для частиц со спином 1/2 (напр., электронов и позитронов, мюонов), удовлетворяющее требованиям специальной относительности теории. Сформулировано П. Дираком в 1928.
Дирака уравнение         

квантовое уравнение движения электрона, удовлетворяющее требованиям относительности теории (См. Относительности теория); установлено П. Дираком в 1928. Из Д. у. следует, что электрон обладает собственным механическим моментом количества движения - Спином, равным ћ/2, а также собственным магнитным моментом, равным Магнетону Бора eћ/mc, которые ранее (1925) были открыты экспериментально (e и m - заряд и масса электрона, с - скорость света, ћ - Планка постоянная). С помощью Д. у. была получена более точная формула для уровней энергии атома водорода (и водородоподобных атомов), включающая тонкую структуру уровней (см. Атом), а также объяснён Зеемана эффект. На основе Д. у. были найдены формулы для вероятностей рассеяния фотонов свободными электронами (Комптона-эффекта (См. Комптона эффект)) и излучения электрона при его торможении (Тормозного излучения (См. Тормозное излучение)), получившие экспериментальное подтверждение. Однако последовательное релятивистское описание движения электрона даётся квантовой электродинамикой (См. Квантовая электродинамика).

Характерная особенность Д. у. - наличие среди его решений таких, которые соответствуют состояниям с отрицательными значениями энергии для свободного движения частицы (что соответствует отрицательной массе частицы). Это представляло трудность для теории, т.к. все механические законы для частицы в таких состояниях были бы неверными, переходы же в эти состояния в квантовой теории возможны. Действительный физический смысл переходов на уровни с отрицательной энергией выяснился в дальнейшем, когда была доказана возможность взаимопревращения частиц. Из Д. у. следовало, что должна существовать новая частица (античастица (См. Античастицы) по отношению к электрону) с массой электрона и электрическим зарядом противоположного знака; такая частица была действительно открыта в 1932 К. Андерсоном и названа Позитроном. Это явилось огромным успехом теории электрона Дирака. Переход электрона из состояния с отрицательной энергией в состояние с положительной энергией и обратный переход интерпретируются как процесс образования пары электрон-позитрон и аннигиляция такой пары (см. Аннигиляция и рождение пар).

Д. у. справедливо и для др. частиц со спином 1/2 (в единицах ћ) - мюонов (См. Мюоны), Нейтрино. Для протона и нейтрона, также обладающих спином 1/2, оно приводит к неправильным значениям магнитных моментов: магнитный момент "дираковского" протона должен быть равен ядерному магнетону eћ/2Мc (М - масса протона), а нейтрона (поскольку он не заряжен) - нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Аномальные магнитные моменты этих частиц обусловлены их сильными взаимодействиями (См. Сильные взаимодействия).

Лит: Бройль Л. де, Магнитный электрон, пер. с франц., Хар., 1936.

Уравнение Дирака для графена         
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака Novoselov K. S.
Матрицы Дирака         
Ма́трицы Дира́ка (также известные как га́мма-ма́трицы) — набор матриц, удовлетворяющих особым антикоммутационным соотношениям. Часто используются в релятивистской квантовой механике.
Статистика Ферми — Дирака         
  • Функция Ферми — Дирака. С ростом температуры ступенька размывается, а заполнение состояний с энергиями выше <math>\mu</math> растёт.
Статистика Фе́рми — Дира́ка — квантовая статистика, применяемая к системам тождественных фермионов (частиц с полуцелым спином, подчиняющихся принципу Паули: одно квантовое состояние не может быть занято более чем одной частицей). Определяет вероятность, с которой данный энергетический уровень системы, находящейся в термодинамическом равновесии, оказывается занятым фермионом.
Уравнение непрерывности         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения
Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.
Неразрывности уравнение         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения

в гидродинамике, одно из уравнений гидродинамики, выражающее закон сохранения массы для любого объёма движущейся жидкости (газа). В переменных Эйлера (см. Эйлера уравнения гидромеханики) Н. у. имеет вид:

где ρ - плотность жидкости, v - её скорость в данной точке, a vx, vy, vz - проекции скорости на координатные оси. Если жидкость несжимаема (ρ = const), Н. у. принимает вид:

Для установившегося одномерного течения в трубе, канале и т.п. с площадью поперечного сечения S Н. у. даёт закон постоянства расхода ρSv = const.

С. М. Тарг.

Уравнение Шрёдингера         
  • Альпбахе]]
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗ КВАНТОВОЙ МЕХАНИКИ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Шредингера уравнение; Шрёдингера уравнение; Уравнение Шредингера; Осцилляционная теорема
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Кинетическое уравнение Больцмана         

уравнение для функции распределения f (ν, r, t) молекул газа по скоростям ν и координатам r (в зависимости от времени t), описывающее неравновесные процессы в газах малой плотности. Функция f определяет среднее число частиц со скоростями в малом интервале от ν до νν и координатами в малом интервале от r до r + Δr (см. Кинетическая теория газов). Если функция распределения зависит только от координаты х и составляющей скорости νx, К. у. Б. имеет

.

(m - масса частицы). Скорость изменения функции распределения со временем характеризуется частной производной , второй член в уравнений, пропорциональный частной производной функции распределения по координате, учитывает изменение f в результате перемещения частиц в пространстве; третий член определяет изменение функции распределения, обусловленное действием внешних сил F. Стоящий в правой части уравнения член, характеризующий скорость изменения функции распределения за счёт столкновений частиц, зависит от f и характера сил взаимодействия между частицами и равен

Здесь f, f1 и f', f'1 - функции распределения молекул до столкновения и после столкновения соответственно, ν, ν1 - скорости молекул до столкновения, dσ=σdΩ - дифференциальное эффективное сечение рассеяния в телесный угол (в лабораторной системе координат), зависящее от закона взаимодействия молекул; для модели молекул в виде жёстких упругих сфер (радиуса R) σ =4R2cosϑ, где ϑ - угол между относительной скоростью - ν 1 сталкивающихся молекул и линией, соединяющей их центры. К. у. Б. было выведено Л. Больцманом в 1872.

Различные обобщения К. у. Б. описывают поведение электронного газа в металлах, Фононов в кристаллической решётке и т.д. (однако чаще эти уравнения называют просто кинетическими уравнениями, или уравнениями переноса). См. Кинетика физическая.

Г. Я. Мякишев

Википедия

Уравнение Дирака

Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.

Уравнение Дирака вместе с уравнениями Максвелла позволяет объяснить взаимодействие свободных электронов с электромагнитным полем, рассеяние света на электроне (эффект Комптона), рождение фотоном электронно-позитронной пары и т. д. Оно значительно обобщает классические уравнения Ньютона, релятивиcтские классические уравнения движения частиц и уравнение Шрёдингера.

За открытие этого уравнения П. Дирак получил Нобелевскую премию по физике 1933 года.

Что такое Уравнение Дирака - определение